Algebra II 8-6
 Some Useful Theorems

Theorem - A polynomial function $P(x)$ with degree n has exactly n roots.
How many solutions do each of the following have? $\quad x$-intereepts
$P(x)=x^{3}+5 x^{2}-7 x+1 \quad 3$
zeros
solutions.
$P(x)=x^{12}-3 x^{4}+8 x$
12
$P(x)=4+3 x^{5}-7 x^{6}+11 x^{9}-131 x^{2} \quad$ 8

*1) $\frac{3 x^{5}-4 x^{3}-\frac{7 x^{2}+11 x}{2}+9}{2}=0$ For negafives, change the odd terms $\underbrace{-3 x^{5}+4 x^{3}-7 x^{2}-11 x+9=0}_{1} \underbrace{-1}_{3}=0$	$+1-1 i$
	2 3 0 0 3 2 2 1 2 0 1 4
	$+1-1 i$
$\text { *) } \underbrace{6 x^{6}+7 x^{5}-x^{4}+2 x^{2}-x-1=0}_{1}$	3 3 0 1 3 2 3 1 2 1 1 4

